“한의학 진단 과정, AI로 객관적 분석의 길을 열다”

기사입력 2025.09.19 14:31

SNS 공유하기

fa tw
  • ba
  • ka ks url
    가천대 김창업 교수팀, ‘변증’을 ‘차원 축소’로 재해석
    “주관적 임상 의사결정과정의 객관적 탐구 기반 마련”

    표지.png

     

    3명 복사 2.jpg

    ▲왼쪽부터 김창업 교신저자, 배효진·강봉수 제1저자

     

    [한의신문] 그동안 한의사의 암묵지에 의존해왔던 전통의학의 임상 진단과정이 인공지능(AI)의 정량적 관점으로 분석한 연구결과가 발표했다.

     

    가천대 한의대 김창업 교수팀은 ‘Understanding clinical decision-making in traditional East Asian medicine through dimensionality reduction: An empirical investigation’라는 제하의 연구논문을 국제학술지 ‘Computers in Biology and Medicine’ 10월호에 게재, 변증을 머신러닝 기술로 모델링하는 한편 그 효율성을 객관적으로 분석할 수 있는 과학적 틀을 제시했다. 

     

    연구팀은 한의학 진단의 핵심 과정인 ‘변증(辨證)’을 기계학습의 ‘차원 축소(Dimension Reduction)’와 동일한 원리로 해석할 수 있다는 새로운 가설을 제시했다. 

     

    연구팀에 따르면 ‘차원 축소(Dimension Reduction)’란 복잡한 데이터를 몇 가지 핵심 기준으로 압축해 분석을 용이하게 하는 방식으로, 이는 환자의 다양한 증상을 ‘표리(表裏)’나 ‘한열(寒熱)’과 같은 기준으로 단순화하는 전통 한의학의 진단 과정과 맞닿아 있다.

     

    연구팀은 이같은 관점을 바탕으로 ‘상한론(傷寒論)’에 기록된 임상 조문을 바탕 데이터로 분석한 결과, 진단의 첫 단계인 ‘표리’ 구분이 복잡한 증상과 약재 정보를 연결하는 과정에서 가장 추상적이면서도 일반화 성능이 뛰어난 핵심 필터로 작동하는 것이 확인됐다. 

     

    이는 수백년 전 의학자들이 제시한 진단 순서와도 정확히 일치는데, 실제로 청대 의학자 정국팽 등은 팔강변증을 운용할 때 표리를 먼저 살핀 뒤 한열과 허실을 변별해야 한다고 논지한 바 있다. 이는 AI 모델이 전통의학의 핵심적인 사고 과정을 성공적으로 포착했음을 보여준다.

     

    이미지.jpg

     

    이와 함께 AI 의사결정나무 모델에서도 같은 결과가 나타났다. 

     

    실제 증상 정보만으로 약재 처방을 학습시키자 ‘표리’를 판단하는 증상들이 첫 질문으로 채택됐으며, ‘표리’ 개념을 변수로 추가하자 처방 예측 정확도가 크게 향상됐다.

     

    김창업 교수는 “이번 연구는 한의사의 머릿 속에서 이뤄지던 주관적·암묵적 임상 추론 과정을 처음으로 객관적·정량적으로 모델링했다는 데 큰 의미가 있다”며 “이를 토대로 다양한 한의학 진단 과정을 수학적으로 분석·평가하고, 향후 교육 및 임상 현장에서 활용할 AI 보조 시스템 개발로 이어질 것”이라고 전망했다.

     

    한편 이번 연구는 과학기술정보통신부·교육부 재원으로, 한국연구재단 기초연구사업 등의 지원을 받아 수행됐다.

    뉴스

    backward top home